首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48861篇
  免费   503篇
  国内免费   367篇
测绘学   1237篇
大气科学   3252篇
地球物理   8320篇
地质学   20902篇
海洋学   4055篇
天文学   9952篇
综合类   215篇
自然地理   1798篇
  2022年   297篇
  2021年   453篇
  2020年   508篇
  2019年   556篇
  2018年   3751篇
  2017年   3429篇
  2016年   2560篇
  2015年   654篇
  2014年   1074篇
  2013年   1689篇
  2012年   2087篇
  2011年   3840篇
  2010年   3413篇
  2009年   3795篇
  2008年   3077篇
  2007年   3710篇
  2006年   1349篇
  2005年   1175篇
  2004年   1040篇
  2003年   1069篇
  2002年   931篇
  2001年   648篇
  2000年   588篇
  1999年   441篇
  1998年   461篇
  1997年   429篇
  1996年   356篇
  1995年   338篇
  1994年   368篇
  1993年   289篇
  1992年   290篇
  1991年   284篇
  1990年   312篇
  1989年   209篇
  1988年   222篇
  1987年   262篇
  1986年   207篇
  1985年   309篇
  1984年   273篇
  1983年   256篇
  1982年   274篇
  1981年   213篇
  1980年   262篇
  1979年   192篇
  1978年   206篇
  1977年   163篇
  1976年   166篇
  1975年   172篇
  1974年   165篇
  1973年   164篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Highly efficient approximate ray tracing techniques which can be used in seismic emission tomography and in other methods requiring a large number of raypaths are described. The techniques are applicable for the gradient and plane-layered velocity sections of the medium and for the models with a complicated geometry of contrasting boundaries. The empirical results obtained with the use of the discussed ray tracing technologies and seismic emission tomography results, as well as the results of numerical modeling, are presented.  相似文献   
992.
The paradox of the long-term existence of ferromanganese concretions on the ocean floor is considered. It is known that nodules do not sink in the less dense medium of liquefied sediments and have been located on the bottom surface since their genesis over many thousands or even millions of years. At the same time, river and sea sludge easily sucks up other objects (of the same density), which in some way fall to the bottom. We propose an original mechanism explaining this paradox, which is based on a combination of three physicochemical phenomena.  相似文献   
993.
With the use of the method of low-frequency microseismic sounding, the configuration of the magmatic feeding system of the Tolbachinsky Dol—a regional zone of areal basaltic volcanism in the southern part of the Klyuchevskoy volcano group in Kamchatka—is studied. The initial data are obtained by a stepby-step recording of the background microseismic noise in 2010–2015 within a thoroughly marked-out survey area covering the zones of fissure eruptions in 1975–1976 and 2012–2013 and, partly, the edifice of the Ploskii (flat) Tolbachik volcano. The depth sections reflecting the distributions of the relative velocities of seismic waves in the Earth’s crust are constructed. For a more reliable interpretation of the revealed deep anomalies, the results of independent geological and geophysical studies are used. The ascertained low-velocity structures are closely correlated to the manifestations of present-day volcanism. It is shown that the feeding structure of the Tolbachinsky Dol is spatially heterogeneous, incorporating subvertical and lateral pipeshaped magma conduits, closely spaced magma feeding channels, and shallow magma reservoirs. A longlived local transcrustal magma conducting zone is revealed, and regularities in the deep structure of the feeding systems of fissure eruptions are identified. The configuration of the established subvertical magma conduits permits basalts moving to rise to the surface by different paths, which, inter alia, explains the contrasting magma compositions observed during a single eruption. Thus, based on the instrumental data, it is shown that the magmatic feeding structure of the Tolbachinsky Dol has a number of specific peculiarities and is significantly more complicated than has been previously thought about the areal volcanic fields.  相似文献   
994.
The geotectonic position of the Pyrenees mountain massif in the Alpine–Indonesian mobile belt is considered. The geological data testify to the formation of the structure of the Pyrenees in the setting of a subhorizontal compression perpendicular to the ridge. The commonly accepted interpretation considers this compression in the context of plate tectonic notions related to the collision between the Iberian and Eurasian lithospheric plates resulting from the convergence of the Eurasian and African plates. However, this interpretation is challenged by the the geodetic and seismological measurements. The GPS measurements suggest a certain cross-strike spreading rather than shortening of the Earth’s crust; the focal mechanisms of the earthquakes indicate the predominance of a subhorizontal extension perpendicular to the strike of the Pyrenees mountain range. The processes of the gravitational collapse of the mountain chain during the isostatic upwelling of the orogenic crust are considered as the most probable cause of this spreading by a number of the authors.  相似文献   
995.
The records from 161 identical broadband seismic stations located in different regions of the world after the strong earthquakes off Sumatra Island on December 26, 2004 with magnitude M = 9.1, in Chile on February 27, 2010 with M = 8.8, and the Tohoku earthquake in Japan on March 11, 2011 with M = 9.0 are studied. Oscillations with a period of ~11 h are analyzed. They are observed as pulsations in the free radial oscillations of the Earth lasting more than one week. The stations located a few hundred kilometers apart from each other demonstrate identical records. As the distance between the stations becomes larger, the structure of the records becomes different. At interstation distances of about 3800 km, the records at the stations have opposite phases, and at distances of ~7600 km, the phases coincide. This is reflected in the spatial structure of the areas of the positive and negative phases of the oscillations on the Earth’s surface. This structure recurs at the same time instant after the three considered earthquakes, which indicates that this effect is independent of the properties of the sources. The spatial positions of the areas of positive and negative phases are also not correlated to the geological conditions in the vicinity of the stations which are located both in the subduction zone and within the platform. The structure of the pulsations and their spatial distribution differ from the variations of the Earth’s tides.  相似文献   
996.
At high latitudes, sporadic geomagnetic disturbances associated with geomagnetic storms introduce significant uncertainty in measurements by borehole inclinometers during the directional drilling of deep wells. Variations in the magnetic declination may lead to significant deviations of the actual coordinates of the borehole from the prescribed trajectory. Using the methods for calculating the profile of the actual borehole, we conducted model estimates of the influence of sporadic disturbances in the magnetic declination observed during the magnetic storm of October 28–31, 2003 on the displacement azimuth and intensity of borehole bending at the given locations at the sites of two high-latitude magnetic observatories. It is shown that, unless filtered based on the data of parallel observatory measurements, the geomagnetic disturbances can lead to unacceptably large errors in the borehole inclinometer measurements and cause a borehole deflection exceeding the admissible values.  相似文献   
997.
The contribution made by V.V. Beloussov (1907–1990), an outstanding Earth scientist in the former Soviet Union and Russia, to the development of planetary geophysics is considered. Beloussov was a brilliant coordinator of international cooperation and direct inspirer of international scientific programs of paramount importance. He took up one of the key positions in organizing and holding the International Geophysical Year (IGY) in 1957–1958. In 1960, Beloussov was elected President of the International Union of Geodesy and Geophysics and proposed the project “The upper mantle and its influence on the Earth’s crust,” which subsequently became known worldwide as the Upper Mantle Project. The project underlined that the experience of the IGY should be extended to studies of the deep structure of the Earth and the processes taking place in the Earth’s interior. The fulfillment of this and the subsequent Geodynamic project resulted in a breakthrough in the knowledge about the deep structure of the Earth, particularly the structure of the oceans. Beloussov actively advocated integrating science of the Earth, geonomy, and in his scientific research sought a geonomic approach incorporating the entire complex of geological, geophysical, and geochemical data. Beloussov’s scientific heritage contains propositions that are of current importance and can be involved in modern developments of the Earth sciences.  相似文献   
998.
Correcting the effects of the sphericity of the Earth in the results of the interpretation of gravimetric data is a topical issue in modern gravimetry. Estimating the error of the gravity field calculations due to the replacement of the spherical Earth model by the plane model is an important part of this problem. In this paper, a method is proposed for transforming the plane density models into spherical ones and vice versa. Algorithms for calculating the vertical component of gravity field for both model types are presented. For two extensive plane models of the Earth’s density, their transformation into spherical models is carried out and the resulting gravity fields are compared. The relative root mean square residuals between the fields calculated with this replacement are at most 5%.  相似文献   
999.
The question of what exactly happens with the geodynamo process during the reversal of a geomagnetic field is studied in a simple geodynamo model. The geodynamo action is described by the so called dynamo number characterizing the joint action of the main drivers of the geomagnetic field, i.e., the differential rotation and mirror–asymmetric convection. In mirror-asymmetric convection, for instance, in the northern hemisphere, there are more right vortices than left vortices, whereas in the southern hemisphere, there are more left vortices than right vortices. The effect of the magnetic field on the flow is described by the suppression of the mirror asymmetry: due to this suppression, e.g., in the northern hemisphere, the excess of right vortices over left vortices decreases. It is also assumed that due to this suppression, the mirror asymmetry can change its sign; i.e., the number of left vortices in the northern hemisphere can become larger than the number of right vortices. Correspondingly, the dynamo number can also change its sign. It is shown that the short-term changes of the sign of the dynamo number are responsible for the very short time span accommodating the reversal, when compared to the interval between the reversals.  相似文献   
1000.
Polarization characteristics (polarization type, ellipticity ε, tilt angle τ of the polarization ellipse’s major axis) of high-latitude magnetic impulse events (MIEs) observed at the latitude of the dayside polar cusp are studied. It is established that all impulses are elliptically polarized, being right-polarized in 43% of cases (R-type) and left-polarized in 57% of cases (L-type). The right-polarized MIEs on the ground are more pronounced in the azimuthal direction, whereas the left-polarized events are more clearly marked in the meridional direction. The MIEs of both polarization types have the properties of intermittent processes. It is shown that diurnal and seasonal variations in the occurrence frequency and amplitudes of the events depend significantly on the type of their polarization. The R- and L-type impulse events are predominantly observed during the descending and ascending phase of the solar cycle, respectively. Solar wind high-speed streams (HSSs) are more favorable for exciting right-polarized impulses, whereas left-polarized impulse events are more efficiently excited by coronal mass ejection (CME). It is established that R-type impulses emerge in the conditions when the orientation of the interplanetary magnetic field vector is close to the radial direction against the development of moderate magnetospheric substorms whereas the L-type impulses appear when IMF is perpendicular to the Sun–Earth line in the absence of substorms. The behavior of the characteristics of impulse events significantly depends on the value of the IMF Bz-component and on the angle θxB = arccos(Bx/B). It is conjectured that excitation of the two groups of impulses is caused by the IMF structures in the solar wind stream with the characteristic configuration in the ecliptic plane, which determine the polarization type and properties of MIEs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号